Gonadal steroids examples

Other Assays Rarely Used- General availability of assays that can reliably measure suppressed TSH has made this the gold standard to which other tests must be compared, and has effectively eliminated the need for most previously used ancillary tests. There are only rare causes of confusion in the TSH assay. Severe illness, dopamine and steroids, and hypopituitarism, can cause low TSH, but suppression below µ/ml is uncommon and below µ/ml is exceptional, except in thyrotoxicosis. Thyrotoxicosis is associated with normal or high TSH in patients with TSH producing pituitary tumors and selective pituitary resistance to thyroid hormone.
If TSH, FT4, TRAb, and other tests noted above do not establish the diagnosis, it may be wise to do nothing further except to observe the course of events. In patients with significant thyroid hyperfunction, the symptoms and signs will become clearer, and the laboratory measurements will fall into line. Measurement of BMR, T3 suppression of RAIU, TRH testing, and clinical response to KI are of historical interest.

Female ovaries are two almond shaped glands on each side of the uterus. They have three main functions; (i) Containing immature ova (eggs), (ii) The secretion of oestrogen, and (ii) the secretion of progesterone. Ostrogen is secreted by the adrenal cortex as well as the ovaries, and is present in the blood of all females from puberty through to the menopause. oestrogen acts on the structure of the reproductive organs, especially during the menstrual cycle. This induces and maintains female secondary sexual characteristics. Progesterone works on the uterus to prepare it for the implantation of a fertilised ovum (egg). It causes the development of the breasts, and is essential for the complete development of the maternal proportion of the placenta.

Finally, there are instances when a progesterone-based hormone therapy might be used in the treatment of trans men. Progesterone may be used in some instances to help stop menstrual flow if testosterone therapy alone does not adequately stop the cycle after a reasonable period of treatment. A short course of progesterone may also be prescribed to induce a shedding of the uterine lining after testosterone therapy has progressed, in the event that there is any unusual buildup of the endometrium. This may help prevent spot bleeding as well as potentially decreasing the risk of uterine cancer. To learn more specifics about FTM testosterone therapy, please read the sections " FTM Testosterone Therapy Basics " and " FTM Testosterone Therapy and General Health ."

D-Aspartic acid (D-Asp) and nitric oxide (NO) are two biologically active molecules playing important functions as neurotransmitters and neuromodulators of nerve impulse and as regulators of hormone production by endocrine organs. We studied the occurrence of D-Asp and NO as well as their effects on testosterone synthesis in the testis of boar. This model was chosen for our investigations because it contains more Leydig cells than other mammals. Indirect immunofluorescence applied to cryostat sections was used to evaluate the co-localization of D-Asp and of the enzyme nitric oxide synthase (NOS) in the same Leydig cells. D-Asp and NOS often co-existed in the same Leydig cells and were found, separately, in many other testicular cytotypes. D-Asp level was dosed by an enzymatic method performed on boar testis extracts and was 40+/- nmol/g of fresh tissue. NO measurement was carried out using a biochemical method by NOS activity determination and expressed as quantity of nitrites produced: it was +/- nmol/mg of tissue. The effects of the two molecules on steroid hormone production were evaluated by incubating testis homogenates, respectively with or without D-Asp and/or the NO-donor L-arginine (L-Arg). After incubation, the testosterone presence was measured by immunoenzymatic assay (EIA). These in vitro experiments showed that the addition of D-Asp to incubated testicular homogenates significantly increased testosterone concentration, whereas the addition of L-Arg decreased the hormone production. Moreover, the inclusion of L-Arg to an incubation medium of testicular homogenates with added D-Asp, completely inhibited the stimulating effects of this enantiomer. Our results suggest an autocrine action of both D-Asp and NO on the steroidogenetic activity of the Leydig cell.

Gonadal steroids examples

gonadal steroids examples

D-Aspartic acid (D-Asp) and nitric oxide (NO) are two biologically active molecules playing important functions as neurotransmitters and neuromodulators of nerve impulse and as regulators of hormone production by endocrine organs. We studied the occurrence of D-Asp and NO as well as their effects on testosterone synthesis in the testis of boar. This model was chosen for our investigations because it contains more Leydig cells than other mammals. Indirect immunofluorescence applied to cryostat sections was used to evaluate the co-localization of D-Asp and of the enzyme nitric oxide synthase (NOS) in the same Leydig cells. D-Asp and NOS often co-existed in the same Leydig cells and were found, separately, in many other testicular cytotypes. D-Asp level was dosed by an enzymatic method performed on boar testis extracts and was 40+/- nmol/g of fresh tissue. NO measurement was carried out using a biochemical method by NOS activity determination and expressed as quantity of nitrites produced: it was +/- nmol/mg of tissue. The effects of the two molecules on steroid hormone production were evaluated by incubating testis homogenates, respectively with or without D-Asp and/or the NO-donor L-arginine (L-Arg). After incubation, the testosterone presence was measured by immunoenzymatic assay (EIA). These in vitro experiments showed that the addition of D-Asp to incubated testicular homogenates significantly increased testosterone concentration, whereas the addition of L-Arg decreased the hormone production. Moreover, the inclusion of L-Arg to an incubation medium of testicular homogenates with added D-Asp, completely inhibited the stimulating effects of this enantiomer. Our results suggest an autocrine action of both D-Asp and NO on the steroidogenetic activity of the Leydig cell.

Media:

gonadal steroids examplesgonadal steroids examplesgonadal steroids examplesgonadal steroids examplesgonadal steroids examples